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Abstract Anharmonic potentials with a rotational terms are widely used in quantum
chemistry of diatomic systems, since they include the influence of centrifugal force on
motions of atomic nuclei. For the first time the Taylor-expanded renormalized Morse
oscillator is studied within the framework of supersymmetric quantum mechanics
theory. The mathematical formalism of supersymmetric quantum mechanics and the
Darboux transformation are used to determine the bound states for the Morse anhar-
monic oscillator with an approximate rotational term. The factorization method has
been applied in order to obtain analytical forms of creation and annihilation opera-
tors as well as Witten superpotential and isospectral potentials. Moreover, the radial
Schrödinger equation with the Darboux potential has been converted into an exactly
solvable form of second-order Sturm–Liouville differential equation. To this aim the
Darboux transformation has been used. The efficient algebraic approach proposed can
be used to solve the Schrödinger equation for other anharmonic exponential potentials
with rotational terms.

Keywords Factorization method · rotating Morse oscillator · Supersymmetric
quantum mechanics ·Darboux transformation ·Pekeris transformation ·Superpotential

1 Introduction

Analytical solution of the Schrödinger equation for anharmonic potentials with a rota-
tional term, describing influence of centrifugal force on nuclei motions in diatomic
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systems, is of high importance in nonrelativistic quantum mechanics and quantum
chemistry, since the wave function contains full information about a quantum sys-
tem considered. The exact solutions of the one-dimensional Schrödinger equation for
the Coulomb type of potential and for a three-dimensional harmonic potential plus
Rosen-Morse non-central potential, derived with the use of the Laplace transform,
represent two important examples in quantum mechanics [1,2]. There are only few
anharmonic potentials for which exact energy levels and wave functions are deter-
mined. For example, some exactly solvable quantum systems such as: the Morse,
Rosen-Morse, Kratzer, Wei-Hua and pseudoharmonic oscillator as well as Pöschl-
Teller potential have attracted much attention [3].

In the last few years many quantum methods have been developed to solve the
Schrödinger equation in the framework of an algebraic approach. One of the most
important methods is to solve this second-order differential equation using its transfor-
mation into the same well known ordinary differential equations, whose exact solutions
can be specified as the confluent hypergeometric functions, associated with the Kum-
mer function, Laguerre polynomials and Whittaker function. Also, supersymmetric
quantum mechanics (SUSY QM) method is strictly related with analytical solutions
of eigenproblems for many anharmonic potentials [4–14]. Using the ideas of SUSY
QM theory and an integrability condition called the shape invariance condition for a
whole class of shape invariant potentials the exact (bound-state) spectrum of energy
levels can be calculated [15–18]. It should be stressed that the concept of the shape
invariant potentials within the SUSY QM method was introduced by Gendenshtein
[19]. A potential is said to be shape invariant if its SUSY partner potential has the
same spatial dependence as the original potential. The formalism of the SUSY QM
and the factorization method have been mainly extended to anharmonic potentials and
SUSY partner Hamiltonians for these potentials have been constructed and applied to
determine exact solutions of the Schrödinger equation. Using this approach it has been
proved that there exist an equivalence between the solution of the nonlinear Riccati
equation and the related second-order linear differential equation. Also approximate
methods based on SUSY QM approach have been introduced for quantum mechan-
ics to solve many eigenproblems. Three of the notable ones are the 1/N expansion
[20], δ-expansion of many classes of superpotentials [21] and SUSY-inspired WKB
semi-quantum approximation [22,23].

The second method proposed to study the solutions of the Schrödinger equation is
the Nikiforov–Uvarov method. This simple algebraic procedure was introduced for
solution of the Schrödinger equation, and it is based on its transformation into hyper-
geometric type second-order differential equations [24,25]. Recently, Bayrak et al.
[26] have determined analytical solutions of the radial Schrödinger equation for the
Kratzer potential using the asymptotic iteration method (AIM). Energy eigenvalues
can be determined using this method with applying of the quantization condition. This
very efficient quantum method has been proposed to solve second-order differential
equations, for which the Schrödinger equation with an exactly solvable potential can
be converted [27–29]. It should be stressed that Al-Dossary [30] has obtained eigen-
energies of the Schrödinger equation with the rotating Morse potential by means of
the asymptotic iteration method. The approach proposed has been applied to several
diatomic molecules. Moreover, Bayrak and Boztosun [31] have presented analytical
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solution of the radial Schrödinger equation with the rotating Morse potential within
the framework of the AIM method. Exact solutions of the D-dimensional Schrödinger
equation with pseudoharmonic and modified Kratzer potentials have been obtained
by applying an ansatz to the wavefunctions [32]. In this paper the authors have found
that for D = 3 bound state eigensolutions recover their standard form, known from
the literature. Recently, the analytical solution of radial Schrödinger equation in three
dimensions has been derived for inverse-power potentials with the use of an ansatz
for the eigenfunctions [33]. Khan [34] has solved the radial Schrödinger equation
with fourth-order inverse-power potential in N -dimensional Hilbert space. In order
to solve this equation power series method and a suitable ansatz for the wavefunc-
tion have been applied. Also, the analytical transfer matrix (ATM) method has been
employed to determine the eigenvalues of the Schrödinger equation for the rotating
Morse potential [35]. In this study a hierarchy of supersymmetric partner potentials
has been obtained with the use of the Pekeris approximation [36]. The authors have
computed the energies of rotational states of the dihydrogen molecule and compared
the results with those obtained with the use of the hypervirial perturbation method.
However, Nasser et al. [37] have studied the rotating Morse potential applying the
tridiagonal J-matrix approach. The bound states for this potential have been computed
using an infinite square integrable basis that supports a tridiagonal matrix represen-
tation for the reference Hamiltonian. Recently, Burkhardt and Leventhal [38] have
studied three-dimensional problem including the Morse function with the centrifugal
term. They proposed very efficient iterative method to solve the Schrödinger equa-
tion with the rotating Morse potential. This approach leads to the renormalized Morse
oscillator and the energy eigenvalues of vibrational and rotational states.

The aim of this study is to determine the bound state eigensolutions for the Morse
potential with rotational term using the SUSY QM approach and Darboux transforma-
tion. We apply the factorization procedure to derive analytical forms of superpotentials
and isospectral potentials as well as annihilation and creation operators. Finally, by
using Darboux transformation, we attempt to convert the Schrödinger equation with
this potential into exactly solvable form of a Sturm–Liouville second-order differential
equation.

2 Pekeris transformation

Let’s consider the following radial Schrödinger equation for the Morse potential with
rotational term:

{
− h̄2

2μ

d2

dr2 + h̄2 J (J + 1)

2μr2 + De {exp [−2α(r −re)] − 2 exp [−α(r −re)]}
}

�υJ (r)

= EυJ �υJ (r),

(1)

where De stands for the dissociation energy of a diatomic molecule, re denotes the
equilibrium internuclear distance, the parameter α is the range factor, J is the rotational
quantum number, υ is the vibrational number and μ is the reduced mass of a system.
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We apply the Pekeris transformation [36], x = exp[−α(r −re)], and carry out a Taylor
series expansion of the centrifugal potential, whence keeping just the terms through
2nd order we obtain from the Eq. (1)

V (r)eff = Dex2 − 2Dex + A

(
1 − 3

αre
+ 3

α2r2
e

)
+ A

(
4

αre
− 6

α2r2
e

)
x

+A

(
− 1

αre
+ 3

α2r2
e

)
x2, (2)

where x = exp[−α(r −re)] and A = h̄2

2μ
J (J+1)

r2
e

. In the next paper we will try to expand

the effective potential including the centrifugal term about some other value of r than
re. In particular, the expansion about the mean value of r seems to be appropriate.

We can also rewrite the Eq. (2) in a more transparent form:

V (r)eff = B0 − 2B1x + B2x2, (3)

where:

B0 = A
(

1 − 3γ + 3γ 2
)
, B1 = De − A

(
2γ − 3γ 2

)
,

B2 = De + A
(
−γ + 3γ 2

)
, (4)

with γ = 1
αre

.

After applying the following variables changes:

r
′
e = re + 1

α
ln

(
B2

B1

)
and D′

e = B2
1

B2
(5)

we get the following form of the effective potential:

V (r)eff = B0 + D′
e

{
exp

[−2α(r − r ′
e)

] − 2 exp
[−α(r − r ′

e)
]}

. (6)

The potential obtained above is congruent with the Morse potential with J = 0 (purely
vibrational problem).

3 The rotational-vibrational Morse isospectral potential (Darboux potential).
Application of the SUSY QM theory

We assume the following form of the Witten superpotential, from which we will obtain
the analitycal form of the Morse potential with a rotational term:

W0J (r) = C exp
[−α(r − r ′

e)
] − D − E . (7)
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The C, D and E constants that can be seen in the equation above will be determined
with the use of the Riccati equation:

V (r)eff = h̄2

2μ

[
W 2

0J (r) + W ′
0J

]
+ E0J . (8)

After substituting (7) to the Eq. (8) we receive:

V (r)eff = h̄2

2μ
C2

{
− [α + 2 (D + E)]

C
exp [−α(r − re)] + exp [−2α(r − re)]

}

+ h̄2

2μ

(
D2 + 2DE + E2

)
. (9)

Notice that the potential (9) is only congruent with the potential (6) when following
conditions are fulfilled:

C =
(

2μD′
e

h̄2

)1/2

, D = 4B0μ

h̄2 (2C − α)
, E = 2C − α

2
− 4B0μ

h̄2 (2C − α)
. (10)

We see that the Witten superpotential allows to reconstruct the Morse potential consid-
ered if only we use appropriate constants, with whom the Eq. (8) is true. The energy
of the vibrational ground state for a given rotational quantum number J takes the
following form:

E0J = − h̄2

2μ
E2 = − h̄2

2μ

[
2C − α

2
− 4B0μ

h̄2 (2C − α)

]2

(11)

and the vibrational ground state wave function for a given rotational quantum number
J can be expressed as:

�0J (r) = exp

[∫
W0(r)dr

]
= exp [− (D + E) r ] exp

{
−C

α
exp

[−α
(
r − r ′

e

)]}
.

(12)

Hence, according to the SUSY QM theory [39–43], the creation and annihilation
operators, that factorize the Hamiltonian Ĥ±, take the following forms:

â = h̄√
2μ

{
C exp

[−α(r − r ′
e)

] − (D + E) + d

dr

}

â† = h̄√
2μ

{
C exp

[−α(r − r ′
e)

] − (D + E) − d

dr

}
(13)

and fulfill the following relationship:

â†â = Ĥ± − E0J , (14)
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where Ĥ± = − h̄2

2μ
d2

dr2 + V ±(r). V +(r) denotes the analytical form of (6), whilst

V −(r) stands for, isospectral with (6), Darboux potential. Within the SUSY QM theory
∧

H+ and
∧

H−denote two partner Hamiltonians. Applying the Darboux transformation
[44] we obtain the following form of the Darboux potential, isospectral with (6):

VD(r) = Veff(r) − h̄2

μ

[
dW0(r)

dr

]
= Veff(r) − h̄2Cα

μ
exp

[−α(r − r ′
e)

]
, (15)

which corresponds to the following rotational-vibrational wave function of a vibra-
tional ground state:

ϕ0J (r)=exp

[
−

∫
W0(r)dr

]
=exp [(D+E) r ] exp

{
C

α
exp

[−α
(
r −r ′

e

)]}
. (16)

In general we can write the solution of Riccati equation in a following manner:

Wg(r) = W0(r) + b

λ(r)
, (17)

where b is an integration constant and λ(r) can be expressed in a following way:

λ(r) = exp

[
2

∫
W0(r)dr

] {
γ + b

∫
exp

[
−2

∫
W0(r)dr

]
dr

}
, (18)

where γ plays a role of an integration constant.
Hence, we obtain the general formula of the Darboux potential:

VG D(r) = VD(r) − h̄2

μ

d

dr

[
b

λ(r)

]
, (19)

which is correlated with the following vibrational ground state function:

ϑg0J (r) = exp

{
−

∫ [
W0(r) + b

λ(r)

]
dr

}
= ϕ0J (r)

γ + b
∫

ϕ2
0J (r)dr

. (20)

Moreover, we can factorize the general Hamiltonian operator Ĥ±
g with the use of the

following operators:

Â = h̄√
2μ

{
C exp

[−α(r − r ′
e)

] − (D + E) + b

λ(r)
+ d

dr

}

Â† = h̄√
2μ

{
C exp

[−α(r − r ′
e)

] − (D + E) + b

λ(r)
− d

dr

}
. (21)

These operators satisfy the following relations:

Â† Â = Ĥ±
g − E0J , (22)
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4 Analytical determination of the �υJ (r) wave function with the use of the
SUSY approach

4.1 Basic formalism of SUSY QM

In general eigenproblem for a given potential takes the following form:

− h̄2

2μ
� ′′

υ(x) + V (x)�υ(x) = Eυ�υ(x) (23)

and we can transform it into the well-known nonlinear Riccati equation:

h̄2

2μ

[
W 2

υ (x) + W ′
υ(x)

]
+ Eυ = V (x), (24)

where

Wυ(x) = d

dx
ln �υ(x). (25)

In the Eq. (24) W ′
υ(x) is the first-order derivative of the superpotential with respect to

x . The Eq. (24) is valid for every υ. In particular for υ = 0 we obtain

h̄2

2μ

[
W 2

0 (x) + W ′
0(x)

]
+ E0 = V (x). (26)

The Eq. (26) has a crucial meaning, since it allows to determine potentials analytically,
when one knows the Witten superpotential W0 (x). With the knowledge of the Witten
superpotential we can immediately find the analytical form of the ground state wave
function by the use of the following Darboux transformation:

�0(x) = exp

[∫
W0(x)dx

]
. (27)

To solve the Eq. (23) analytically we presume the following form of the wave function:

�υ(x) = �0(x) fυ(x), (28)

where fυ(x) is the function that we need to determine. This function fulfills the
condition f0(x) = 1 for υ = 0. Hence we can rewrite Eq. (25) in the following
manner:
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Wυ(x) = f ′
υ(x)

fυ(x)
+ W0(x). (29)

In this way we obtain the following equation:

h̄2

2μ

[
W 2

υ (x) + W ′
υ(x)

]
= h̄2

2μ

[
W ′

0(x) + W 2
0 (x) + f ′′

υ (x) + 2W0 f ′
υ(x)

fυ(x)

]
. (30)

Therefore, the Eq. (30) yields

V (x) = h̄2

2μ

[
W 2

0 (x) + W ′
0(x) + f ′′

υ (x) + 2W0 f ′
υ(x)

fυ(x)

]
+ E0. (31)

Finally, on the basis of Eqs. (24) and (26), we get the following second-order
Sturm–Liouville differential equation, allowing us to determine the function fυ(x) for
a particular form of Witten superpotential:

f ′′
υ (x) + 2W0(x) f ′

υ(x) + 2μ

h̄2 (Eυ − E0) fυ(x) = 0. (32)

It should be stressed that in all the above equations variable x does not correspond to
the variable x used in the Eq. (2).

4.2 SUSY QM approach towards the rotational-vibrational Morse oscillator

Applying the algebraic approach developed by Peña et al. [43] and after substituting
superpotential (7) to the differential Eq. (32) we obtain:

f ′′
υJ (r)+2

{
C exp

[−α(r −r ′
e)

]−δ
}

f ′
υJ (r)+ 2μ

h̄2 (EυJ −E0J ) fυJ (r)=0, (33)

where δ = D + E .

After applying the following variable changes:

x = r − r ′
e and y = 2γ exp (−αx) , where γ = C

α
(34)

we get:

y f ′′
υJ (y) + (2γ − 1 − y) f ′

υJ (y) +
(
ω2

0J − ω2
υJ

) 1

y
fυJ (y) = 0, (35)

where ω2
υJ = − 2μ

h̄2α2 EυJ , ω2
0J = − 2μ

h̄2α2 E0J .
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Then, assuming that fυJ (y) = yζ �υJ (y), we can transform the Eq. (35) to the
following form:

y�′′
υJ (y) + (2ζ + 2γ − 1 − y)�′

υJ (y) +
(




y
− ξ

)
�υJ (y) = 0, (36)

where 
 = ζ 2 −2ζ +2ζγ +(
ω2

0J − ω2
υ J

)
. The function fυ J (y) fulfills the condition

of regularity for y = 0.

We can transform the Eq. (36) to a hypergeometrical equation, demanding that

 = 0. For each ζ that satisfies this condition we obtain the following Kummer
equation:

y�′′
υ J (y) + (2ζ + 2γ − 1 − y)�′

υ J (y) − ζ�υ J (y) = 0, (37)

where ζ = 1 − γ +
√

1 − 2γ + γ 2 + ω2
0J − ω2

υ J .

The solution of the Eq. (37) is the following confluent hypergeometric function:

�υ J (y) = F (ζ, 2ζ + 2γ − 1, y). (38)

Hence, the wave function which is the solution of the Eq. (1) takes the following form:

�υ J (r) = Nυ J �oJ (r)
{
2γ exp

[−α(r − r ′
e)

]}ζ

F
(
ζ, 2ζ + 2γ − 1,

{
2γ exp

[−α(r − r ′
e)

]}ζ )
, (39)

where Nυ J denotes a normalization constant.
We can obtain energy levels from the condition for the confluent hypergeometric
function to be a υ-degree polynomial:

ξ = −υ. (40)

The stipulation mentioned leads us to the following equation for energy levels:

Eυ J = −υ2 − ω2
0J − 2υ + 2γ υ

k
, (41)

where k = − 2μ

h̄2α2 .

5 Concluding remarks

In this paper the Schrödinger equation with Morse potential with rotational term has
been solved applying SUSY QM approach. Isospectral Darboux potentials, associated
with the considered potential have been constructed, using the algebraic approach.
To derive annihilation and creation operators the Darboux transformation has been
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employed. These operators have been constructed directly from the analytical eigen-
functions of the Schrödinger equation for the Darboux anharmonic potential. The
procedure developed can be used to solve other eigenvalue problems with diverse
anharmonic potentials, extended with rotational terms. We hope that this method will
be applied to compute energy level spacings in theoretical molecular spectroscopy and
perturbation theory method. Furthermore, the approach presented can be applied to
approximate solution of the Schrödinger equation with other anharmonic potentials
including rotational term.
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